TensorFlow基础架构

处理结构

计算图纸

Tensorflow 首先要定义神经网络的结构, 然后再把数据放入结构当中去运算和 training.

处理结构

tensors_flowing.gif

因为TensorFlow是采用数据流图(data flow graphs)来计算, 所以首先我们得创建一个数据流流图, 然后再将我们的数据(数据以张量(tensor)的形式存在)放在数据流图中计算. 节点(Nodes)在图中表示数学操作,图中的线(edges)则表示在节点间相互联系的多维数据数组, 即张量(tensor). 训练模型时tensor会不断的从数据流图中的一个节点flow到另一节点, 这就是TensorFlow名字的由来.

Tensor张量意义

张量(Tensor):

张量有多种. 零阶张量为 纯量或标量 (scalar) 也就是一个数值. 比如 [1]
一阶张量为 向量 (vector), 比如 一维的 [1, 2, 3]
二阶张量为 矩阵 (matrix), 比如 二维的 [[1, 2, 3],[4, 5, 6],[7, 8, 9]]
以此类推, 还有 三阶 三维的 …

官方示例

Tensorflow 是非常重视结构的, 我们得建立好了神经网络的结构, 才能将数字放进去, 运行这个结构.

这个例子简单的阐述了 tensorflow 当中如何用代码来运行我们搭建的结构.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
# 创建数据
# 首先, 我们这次需要加载 tensorflow 和 numpy 两个模块, 并且使用 numpy 来创建我们的数据.
import tensorflow as tf
import numpy as np

# 使用 NumPy 生成假数据(phony data), 总共 100 个点.
x_data = np.float32(np.random.rand(2, 100)) # 随机输入
y_data = np.dot([0.100, 0.200], x_data) + 0.300

# 搭建模型
# 接着, 我们用 tf.Variable 来创建描述 y 的参数. 我们可以把 y_data = x_data*0.1 + 0.3 想象成 y=Weights * x + biases, 然后神经网络也就是学着把 Weights 变成 0.1, biases 变成 0.3.
b = tf.Variable(tf.zeros([1]))
W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))
y = tf.matmul(W, x_data) + b

# 计算误差
# 接着就是计算 y 和 y_data 的误差:
# 最小化方差
loss = tf.reduce_mean(tf.square(y - y_data))

# 传播误差
# 反向传递误差的工作就教给optimizer了, 我们使用的误差传递方法是梯度下降法: Gradient Descent 让后我们使用 optimizer 来进行参数的更新.
optimizer = tf.train.GradientDescentOptimizer(0.5)

# 训练
train = optimizer.minimize(loss)

#到目前为止, 我们只是建立了神经网络的结构, 还没有使用这个结构. 在使用这个结构之前, 我们必须先初始化所有之前定义的Variable, 所以这一步是很重要的!
# 初始化变量
# init = tf.initialize_all_variables() # tf 马上就要废弃这种写法
init = tf.global_variables_initializer() # 替换成这样就好

# 接着,我们再创建会话 Session. 我们会在下一节中详细讲解 Session. 我们用 Session 来执行 init 初始化步骤. 并且, 用 Session 来 run 每一次 training 的数据. 逐步提升神经网络的预测准确性.
# 启动图 (graph)
sess = tf.Session()
sess.run(init)

# 拟合平面
for step in xrange(0, 201):
sess.run(train)
if step % 20 == 0:
print step, sess.run(W), sess.run(b)

Session会话控制